Biodegradable Nanofibrous Filters for Air Filtration

Raheleh Givehchi
Chenping Ni
Patrick Bardo
Zhongchao Tan

Department of Mechanical & Mechatronics Engineering
University of Waterloo
Ontario, Canada

65th Canadian Chemical Engineering Conference
Oct 4-7, 2015, Calgary, Canada
Introduction

Objective

Methodology

Results

Conclusion

Environmental Impact

- Low visibility (smog/fog)
- Climate change
- Thermal radiation
- Adsorption
- Reflection
- Water and soil pollution through precipitation

Product of Fuel Combustion + Ammonia + Solvents

Indirect formulation of PM

Direct release of PM
Coarse Particles 2.5-10 µm

Fine Particles <2.5 µm

Inhalable Particles <1 µm

Nanoparticles <100 nm

• Health effects
 ○ Headache
 ○ Heart diseases
 ○ Mortality
 ○ Premature death
 ○ Cancer

Introduction

Objective

Methodology

Results

Conclusion
Solution…
Wear a respiratory mask to protect the respiratory system from inhalation of airborne PM.

Knowledge gap:
Performance of nanofibrous filters in respiratory mask
The objectives of this study are:

✓ Determine the filtration efficiency of nanofibrous filter media for capturing PM10.

✓ Determine the filtration efficiency of nanofibrous filter media in respiratory mask for protection

✓ Comparing the filtration efficiency of nanofibrous filter respiratory mask with commercial ones
Commercial Respiratory Masks

Nanofibrous Filter mounted in mask 1

Replace the filter of the commercial mask with the fabricate nanofibrous filter

Employing two circular filter media with a diameter of 25 mm
Electrospinning Setup for Filter Fabrication

Polyvinyl alcohol (PVA), 10% w/w
V=15 kV
d=10, 15 cm
Deposition times: 5, 15, 30 min

NF1, d=10 cm

NF2, d=15 cm

df: 183 nm
L: 12 µm
α: 0.0267

df: 145 nm
L: 6 µm
α: 0.0310
1) Experimental Setup to test filter media

Filtration efficiency

\[\eta = 1 - \frac{C_{\text{down}}}{C_{\text{up}}} \]

Filter media holder

Fluidized Bed Generator (TSI 3400A)

APS (TSI 3321)
2) Experimental Setup to test respiratory mask

Due to anthropometric differences, no respirator can be guaranteed to fit all users.
Although NF2 has the lower mean fiber diameter, it does not have the highest efficiency, due to the smaller thickness.
Comparison between the performance of commercialized filter media with nanofibrous filter

Except two filter media, others including nanofibrous filters have efficiency higher than 99%
Filtration Efficiency of different dust masks: head 1

Although the dust masks employed high efficient filter media, their practical efficiency is not high for all of them.
Filtration Efficiency of different dust masks: head 2

Dust masks perform differently for different head’s shape
Filtration Efficiency of different dust masks: head 3

Statistical analysis showed that the head’s shape has a strong significant effect on the performance of FFR (P<0.05)
Effects of head’s shape on mask performance

Commercial

Nanofiber

Particle Diameter (Micron)

Efficiency

0% 20% 40% 60% 80% 100%

Particle Diameter (Micron)

Efficiency

0% 20% 40% 60% 80% 100%
Leakage of dust masks for two filter media

Sealed: NF > Commercial
Non-Sealed: NF < Commercial

Filtration Efficiency vs. Particle Diameter (Micron)
- NF-Sealed: 0.56 in H₂O
- Commercial-Sealed: 0.13 in H₂O
- Commercial, Non-sealed
- NF, Non-sealed
The performance of dust masks depends on both face and mask shapes.

The filtration of dust masks are the same for different heads in the case of sealed masks, because results eliminates the leakage of dust masks on the face.

Employing the NF in the specific designed commercialized mask was not effective due to the high leakage.

NF must be employed in dust mask with the larger surface area and lower leakage.
Acknowledgment

Canada Foundation for Innovation
Fondation canadienne pour l’innovation